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Abstract In this note, we use the so-called microlocal energy method to give a characterization of the

Gevrey–Sobolev wave front set WFHs
τ,σ

(u), which will be useful in the study of non-linear microlocal

analysis in Gevrey classes.
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1 Introduction and Main Results

As is well-known, the microlocal energy method has had a fairly wide range of applications
in the microlocal analysis, particularly in the Gevrey classes, for the linear partial differential
equations (cf. [1]–[4]). However, how to extend this method to the nonlinear microlocal analysis,
this is a pressing problem at present. We know the fundamental point in microlocal analysis is
to depict the wave front set, and usually if we study the nonlinear PDE we need to consider
the problem in Sobolev spaces. So, as a starting point, we need to study the wave front set in
Sobolev spaces (or called the Sobolev wave front set). In this note, we shall consider the problem
in the Gevrey classes and try to use the microlocal energy method to study the Gevrey–Sobolev
wave front set. More precisely, we shall give a characterization for the Gevrey–Sobolev wave
front set, which will be useful for us in the study of singularity analysis for non linear PDE in
Gevrey classes (e.g. as a application of this method, the propagation of Gevrey singularities
for nonlinear PDE will be studied in a forthcoming paper).

We know (cf. [1]–[4]) the microlocal energy method in Gevrey classes Gσ (σ > 1) will
depend on two kinds of cut-off functions in x-space and ξ-space separately, more precisely they
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will actually depend on a sequence of cut-off functions {αi(ξ), βi(x)}, and the latter will be
required to satisfy some special estimates.

Let (x0, ξ
0) ∈ T ∗

R
n\{0}, |ξ0| = 1, as a fixed point, we define αi(ξ) and βi(x) as follows:

Definition of αi(ξ) Let χN (ξ) ∈ C∞
0 , depending on parameter N , with supp χN ⊂ {ξ||ξ −

ξ0| ≤ r0}, 0 ≤ χN (ξ) ≤ 1, and satisfy the following two conditions

χN (ξ) = 1, for |ξ − ξ0| ≤ r0
2
, (1.1)

|∂µ+ν
ξ χN (ξ)| = |χ(µ+ν)

N (ξ)| ≤ (Ncr−1
0 )|µ|ν!1+ε

′
(cr−1

0 )|ν|, for |µ| ≤ N,

where r0 > 0, ε′ > 0, 1 + 2ε′ < σ, and c is an absolute constant (i.e. independent of r0). We
remark that µ, ν ∈ Zn+, and ν can be taken arbitrarily, but µ is restricted by |µ| ≤ N . The
construction of the cut-off function χN (ξ) is rather delicate, we may here refer to Hörmander
[5] and Rodino [6]. Assume

αi(ξ) = χN
(ξ
i

)
, i ∈ Z+, (1.2)

then

|α(µ+ν)
i (ξ)| ≤

(N
i
cr−1

0

)|µ|
ν!1+ε

′
(cr−1

0 )|ν|i−|ν|, for |µ| ≤ N. (1.3)

Here i and N are related by: N is the interger nearest to (ce)−1r0i
1
σ .

Similarly we have:

Definition of βi(x) Let βi(x) ∈ C∞
0 , 0 ≤ βi(x) ≤ 1, supported in |x−x0| ≤ r0, and βi(x) = 1

for |x− x0| ≤ r0
2 , satisfy

|D(µ+ν)
x βi(x)| = |βi(µ+ν)(x)| ≤ (Ncr−1

0 )|µ|ν!1+ε
′
(cr−1

0 )|ν|, for |µ| ≤ N. (1.4)

We also call {αi(Dx), βi(x)} the microlocalizer around the point (x0, ξ
0) with size r0. The

conditions above on αi(ξ) and βi(x) enable us to use two different kinds of estimates, this
makes our treatment fairly easy in the case of the Gevrey class. In other words, by using the
microlocalizer {αi(Dx), βi(x)}, we can deal with the problem from the microlocal view-point.
This method is called the microlocal energy method by Mizohata [1]–[3], where he also gave a
characterization of the Gevrey wave front set WFσ(u) for a σ-ultradistribution u.

Proposition 1.1 (see [2]) Let u be a σ-ultradistribution (σ > 1), and (x0, ξ
0) /∈ WFσ(u)

(with |ξ0| = 1). Then, if r0 is small enough and i is large enough, we have Si =
∑

|µ+ν|≤N
Ciµν‖α(µ)

i βi(ν)u‖ ≤ exp{−εi 1
σ }, where Ciµν = i(1−

1
σ )|µ|− 1

σ |ν|, and ε is a positive constant which
could be chosen independent of r0 when r0 tends to 0.

The converse of Proposition 1.1 also holds. Actually we can state it in a strong form.

Proposition 1.2 (see [2]) Let u be a σ-ultradistribution (σ > 1). If we denote Ciµ0 = i(1−
1
σ )|µ|

then an estimate of the form S̃i =
∑

|µ|≤N C
i
µ0‖α(µ)

i βiu‖ ≤ exp{−ε0i 1
σ }, (∃ε0 > 0), for large i,

implies (x0, ξ
0) /∈WFσ(u).
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In this paper we shall extend the results in Propositions 1.1 and 1.2 to the case of the
Gevrey–Sobolev wave front set WFHs

τ,σ
(u), i.e. by using the microlocal energy method, to give

a characterization of WFHs
τ,σ

(u). Let us first give the definition of the Gevrey–Sobolev space.

Suppose σ > 1, τ, s ∈ R. The Gevrey–Sobolev spaces are defined by

Hs
τ,σ(Rn) = {u ∈ S ′

−τ,σ(Rn), exp[τ〈D〉1/σ]u ∈ Hs(Rn)}, (1.5)

where 〈D〉 = (1−∆)1/2, the space S ′
τ,σ is defined as the dual space of Sτ,σ which in turn, for τ ≥

0, is defined by the inverse Fourier transform from Ŝτ,σ = {v(ξ) ∈ C∞(Rn) | exp[τ〈ξ〉1/σ]v(ξ) ∈
S(Rn)}; for τ < 0, the space Sτ,σ is defined by the transposition of the inverse Fourier transform
from Ŝτ,σ (cf. [7]). The infinite order pseudo-differential operator exp[τ〈D〉1/σ ] is defined by
the Fourier transform as usual (see [6]).

We know Hs
τ,σ is a Hilbert space with inner product

〈u, v〉Hs
τ,σ

= 〈exp[τ〈D〉1/σ]u, exp[τ〈D〉1/σ]v〉Hs , (1.6)

and the norm is defined by

‖u‖Hs
τ,σ

= ‖ exp[τ〈D〉1/σ]u‖Hs . (1.7)

Next we denote Hs
τ,σ,loc as the Gevrey locally Sobolev spaces, i.e. u ∈ Hs

τ,σ,loc means that
u is a σ-ultradistribution and for every φ ∈ Gσ′

0 (Rn) with 1 < σ′ < σ we have φu ∈ Hs
τ,σ. If we

write Vx0 for a neighborhood of x0 ∈ R
n, we say u ∈ Hs

τ,σ(x0) if there exists Vx0 such that for
all φ ∈ Gσ′

0 (Vx0), 1 < σ′ < σ, we have φu ∈ Hs
τ,σ. Observe that

⋃
s∈R,τ>0H

s
τ,σ(x0) = Gσ(x0),

the space of all the functions u which are of class Gσ in a neighborhood of x0; moreover
Gσ

′
(x0) ⊂ Hs

τ,σ(x0) with strict inclusion for all s ∈ R, τ > 0, 1 < σ′ < σ (see [8]).

Let (x0, ξ
0) ∈ T ∗

R
n\{0}, We say u ∈ Hs

τ,σ(x0, ξ
0) (σ > 1, s, τ ∈ R), is a Gevrey mi-

crolocally (i.e. near (x0, ξ
0)) Sobolev space, if there exist Vx0 and a conic neighborhood Γ0 of

ξ0 in R
n\{0}, such that for all φ ∈ Gσ′

0 (Vx0), 1 < σ′ < σ, and every ψ ∈ C∞(Rnξ ), 0-order
homogeneous in ξ for large |ξ| with supp ψ ⊂ Γ0, we have ψ(Dx)(φu) ∈ Hs

τ,σ. Thus we have:

Definition Let u be a σ-ultradistribution, we say (x0, ξ
0) /∈ WFHs

τ,σ
(u) if and only if u ∈

Hs
τ,σ(x0, ξ

0).

Observe that for (x0, ξ
0) /∈WFHs

τ,σ
(u), it is equivalent to say that there exist φ ∈ Gσ′

0 (Rn),
1 < σ′ < σ, with φ ≡ 1 near x0, and a conic neighborhood Γ0 of ξ0 in R

n\{0} (in this paper we
always assume |ξ0| = 1, and for r0 > 0, Γ0 = Γ(ξ0, r0) = {ξ ∈ R

n\{0}| | ξ|ξ| − ξ0| < r0}), such
that ∫

Γ0

exp[2τ〈ξ〉 1
σ ]〈ξ〉2s|φ̂u(ξ)|2dξ <∞. (1.8)

Now we shall give the main results of this note:

Theorem 1.1 Let u be a σ-ultradistribution, (x0, ξ
0) ∈ T ∗

R
n with |ξ0| = 1. If (x0, ξ

0) /∈
WFHs

τ,σ
(u), more precisely if there exist φ ∈ Gσ′

0 (Rn), 1 < σ′ < σ, φ ≡ 1 on {|x − x0| ≤
r0
2 } (∃r0 > 0), φ = 0 outside of {|x−x0| < r0}, and a conic neighborhood Γ(ξ0, r′0) = {| ξ|ξ|−ξ0| <
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r′0} (∃r′0 > 0) of ξ0 in R
n\{0}, such that
∫

Γ(ξ0,r′0)

exp[2τ〈ξ〉 1
σ ]〈ξ〉2s|F(φu)(ξ)|2dξ <∞. (1.9)

Then for any microlocalizer {αi(Dx), βi(x)} around (x0, ξ
0) with size r′′0 ≤ min{r0,r′0)

2 , we have

∑
i

‖αiβiu‖2
L2

τ,σ
i2s−1 =

∑
i

‖ exp[τ〈D〉 1
σ ]αiβiu‖2

L2i2s−1 <∞. (1.10)

Moreover, we have

∑
i

‖α(µ)
i βi(ν)u‖2

L2
τ,σ
i2s+2|µ|−1 <∞, for all µ, ν ∈ Zn+. (1.11)

Conversely, we have:

Theorem 1.2 Assume that for some microlocalizer {αi(Dx), βi(x)} around (x0, ξ
0)∈T ∗(Rn),

|ξ0| = 1 with size r0, it holds for a σ-ultradistribution u

∑
i

‖αiβiu‖2
L2

τ,σ
i2s−1 <∞. (1.12)

Then for any r′0 satisfying r
′
0 <

r0
2 , we have∫

Γ(ξ0,r′0)

exp[2τ〈ξ〉 1
σ ]〈ξ〉2s|F(βiu)(ξ)|2dξ <∞, (1.13)

which implies (x0, ξ
0) /∈WFHs

τ,σ
(u).

Remark The microlocal energy method can be also used to study a similar problem in C∞

category.

2 Proof of Results

Proof of Theorem 1.1 First we prove that for any i ∈ N∫
Γ(ξ0,r′′0 )

exp[2τ〈ξ〉 1
σ ]〈ξ〉2s|F(βiu)(ξ)|2dξ <∞. (2.1)

Let ψ(ξ) ∈ C∞(Rn) be essentially homogeneous of degree 0, with support contained in
Γ(ξ0, r′0), and ψ(ξ) = 1 for {ξ | | ξ|ξ| − ξ0| ≤ r′0

2 }⋂{ξ | |ξ| > A} (∃A > 0). Then since φ ≡ 1
on supp βi(x) ⊂ {|x − x0| < r′′0}, we have 〈D〉sψ(Dx)βiu = 〈D〉sψ(Dx)βi(x)(φu). Commuting
〈D〉sψ(Dx) with βi(x), we have

〈D〉sψ(Dx)βiu =
∑

|ν|<N
ν!−1βi(ν)(x)(〈D〉sψ(Dx))(ν)(φu) +RN (x,Dx)(φu),
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where RN (x, ξ) ∈ Ss−Nσ′ (Rn), the Gσ
′

pseudodifferential operator for some σ′ ∈ (1, σ); and we
observe

‖βi(ν)(x)(〈D〉sψ(Dx))(ν)(φu)‖2
L2

τ,σ
≤ cν

∫
supp[ψ]

exp[2τ〈ξ〉 1
σ ]〈ξ〉2s|F(φu)(ξ)|2dξ, (2.2)

which is finite from (1.9). Next we know (cf. [8, Corollary 1.1]) that RN (x,Dx) is a continuous
mapping from Hs′

τ,σ to Hs′−(s−N)
τ,σ for any s′ ∈ R; and we can assume that φu ∈ H−k

τ,σ for some
k ≥ 0, thus we take N large enough so that s−N ≤ −k, then

‖RN (x,Dx)(φu)‖L2
τ,σ

≤ const. ‖φu‖H−k
τ,σ
<∞. (2.3)

Thus the estimates (1.9), (2.2) and (2.3) give that the estimate (2.1) holds since ψ(ξ) ≡ 1 in
Γ(ξ0, r′′0 ).

Secondly, we denote

hs(ξ) =
∑
i

αi(ξ)2i2s−1, (2.4)

where we know that {αi(Dx), βi(x)} is a microlocalizer around (x0, ξ
0) with size r′′0 , and then

∑
i

‖αiβiu‖2
L2

τ,σ
i2s−1 =

∫
hs(ξ) exp[2τ〈ξ〉 1

σ ]|F(βiu)(ξ)|2dξ. (2.5)

Since supp hs(ξ) ⊂ Γ(ξ0, r′′0 ), so from (2.5) and (2.1), the estimate (1.10) holds if hs(ξ) ≤ c〈ξ〉2s
for a positive constant c which is independent of ξ. In fact let ξ ∈ supp hs be fixed, if supp αi
contains ξ, then |ξ − iξ0| ≤ ir′′0 , i.e. i(1 − r′′0 ) ≤ |ξ| ≤ i(1 + r′′0 ), or equivalently (1 + r′′0 )−1|ξ| ≤
i ≤ (1 − r′′0 )−1|ξ|. Thus we obtain, if r′′0 <

1
2 , that

(1) i2s−1 ≤ const. |ξ|2s−1 if ξ ∈ supp αi;
(2) the number of i, in which ξ ∈ supp αi, is less or equal to 2|ξ|.

These imply

hs(ξ) =
∑
i

αi(ξ)2i2s−1 ≤ c · |ξ| · |ξ|2s−1 ≤ c〈ξ〉2s, (2.6)

where c > 0 is independent of ξ. This proves the estimate (1.10) holds.
Next, since ‖α(µ)

i (ξ)‖ ≤ const. i−|µ| for any µ ∈ Zn+, thus it is obvious that for any µ, ν ∈ Zn+
we have ∑

i

‖α(µ)
i βi(ν)u‖2

L2
τ,σ
i2s+2|µ|−1 <∞. (2.7)

This proves the estimate (1.11).

Proof of Theorem 1.2 Let ξ ∈ Γ(ξ0, r′0), r′0 <
r0
2 . Then

∑
i

‖αiβiu‖2
L2

τ,σ
i2s−1 =

∫
hs(ξ) exp[2τ〈ξ〉 1

σ ]|F(βiu)(ξ)|2dξ,

where hs(ξ) =
∑

i αi(ξ)
2i2s−1. We need only to prove that

hs(ξ) ≥ c · |ξ|2s, for ξ ∈ Γ(ξ0, r′0), (2.8)
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where c > 0 is independent of ξ.
In fact, here we introduce a positive constant ε0 such that 2r′0ε0 = r0

2 − r′0, or equivalently
r′0(1 + 2ε0) = r0

2 . Without loss of generality we can assume here r0 < 1. For fixed ξ ∈ Γ(ξ0, r′0),
then let i satisfy

|i− |ξ|| ≤ ε0r′0i, (2.9)

which implies

|ξ − iξ0| = |ξ − |ξ|ξ0 + |ξ|ξ0 − iξ0| ≤ |ξ − |ξ|ξ0| + ||ξ| − i| ≤ r′0|ξ| + ε0r′0i. (2.10)

Also the estimate (2.9) is equivalent to

(1 − ε0r′0)i ≤ |ξ| ≤ (1 + ε0r′0)i, or (1 + ε0r′0)−1|ξ| ≤ i ≤ (1 − ε0r′0)−1|ξ|. (2.11)

Thus the estimates (2.10) and (2.11) give

|ξ − iξ0| ≤ r0
2
i, i.e. αi(ξ) = 1. (2.12)

From the process above, we have that for ξ ∈ Γ(ξ0, r′0) :
(1) the number of such i, for which the estimate (2.9) is to be satisfied (which also implies

αi(ξ) = 1), can be estimated from below by c1|ξ| (where c1 = (1− ε0r′0)−1 − (1 + ε0r′0)−1 > 0).
(2) for such i as above, we have i2s−1 ≥ c2|ξ|2s−1 (∃c2 > 0, independent of ξ).
Hence we have deduced that for ξ ∈ Γ(ξ0, r′0), hs(ξ) ≥ ∑

i;αi(ξ)=1 i
2s−1 ≥ c1|ξ|i2s−1 ≥

c1c2|ξ|2s. This implies (2.8). Theorem 1.2 is proved.
The following is an obvious corollary of Theorem 1.2:

Corollary 2.1 Let u be a σ-ultradistribution, (x0, ξ
0) ∈ T ∗

R
n\{0}. If {αi(Dx), βi(x)} is a

microlocalizer around (x0, ξ
0) with size r0, and ‖αiβiu‖L2

τ,σ
∈ O(i−s), then for any ε > 0, we

have (x0, ξ
0) /∈WFHs−ε

τ,σ
(u).

Proof of Corollary 2.1 Since ‖αiβiu‖2
L2

τ,σ
i2s≤C, which means for any ε>0 that

∑
i ‖αiβiu‖2

L2
τ,σ

i2(s−ε)−1 ≤ C∑
i i

−(1+2ε) <∞. Thus from Theorem 1.2, we have (x0, ξ
0) /∈WFHs−ε

τ,σ
(u).
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